Voltage-sensing phosphatase reveals temporal regulation of TRPC3/C6/C7 channels by membrane phosphoinositides
نویسندگان
چکیده
TRPC3/C6/C7 channels, a subgroup of classical/canonical TRP channels, are activated by diacylglycerol produced via activation of phospholipase C (PLC)-coupled receptors. Recognition of the physiological importance of these channels has been steadily growing, but the mechanism by which they are regulated remains largely unknown. We recently used a membrane-resident danio rerio voltage-sensing phosphatase (DrVSP) to study TRPC3/C6/C7 regulation and found that the channel activity was controlled by PtdIns(4,5)P(2)-DAG signaling in a self-limiting manner (Imai Y et al., the Journal of Physiology, 2012). In this addendum, we present the advantages of using DrVSP as a molecular tool to study PtdIns(4,5)P(2) regulation. DrVSP should be readily applicable for studying phosphoinositide metabolism-linked channel regulation as well as lipid dynamics. Furthermore, in comparison to other modes of self-limiting ion channel regulation, the regulation of TRPC3/C6/C7 channels seems highly susceptible to activation signal strength, which could potentially affect both open duration and the time to peak activation and inactivation. Dysfunction of such self-limiting regulation may contribute to the pathology of the cardiovascular system, gastrointestinal tract and brain, as these channels are broadly distributed and affected by numerous neurohormonal agonists.
منابع مشابه
Identification and localization of TRPC channels in the rat kidney.
It is well established that transient receptor potential (TRP) channels are activated following stimulation of G protein-coupled membrane receptors linked to PLC, but their differential expression in various cells of the renal nephron has not been described. In the present study, immunoprecipitations from rat kidney lysates followed by Western blot analysis using TRPC-specific, affinity-purifie...
متن کاملAnother story of arginines in voltage sensing: the role of phosphoinositides in coupling voltage sensing to enzyme activity
The sensing of transmembrane electrical potential has long been thought to be unique to voltage-gated ion channels. Recently, however, transmembrane voltage has been shown to regulate the enzymatic activity of a protein, called voltage-sensing phosphatase (VSP), that is conserved across diverse phyla (Murata et al., 2005; Murata and Okamura, 2007; Hossain et al., 2008). In VSP, the voltage sens...
متن کاملDomain-to-domain coupling in voltage-sensing phosphatase
Voltage-sensing phosphatase (VSP) consists of a transmembrane voltage sensor and a cytoplasmic enzyme region. The enzyme region contains the phosphatase and C2 domains, is structurally similar to the tumor suppressor phosphatase PTEN, and catalyzes the dephosphorylation of phosphoinositides. The transmembrane voltage sensor is connected to the phosphatase through a short linker region, and phos...
متن کاملVoltage-Controlled Enzymes: The New Janus Bifrons
The Ciona intestinalis voltage-sensitive phosphatase, Ci-VSP, was the first Voltage-controlled Enzyme (VEnz) proven to be under direct command of the membrane potential. The discovery of Ci-VSP conjugated voltage sensitivity and enzymatic activity in a single protein. These two facets of Ci-VSP activity have provided a unique model for studying how membrane potential is sensed by proteins and a...
متن کاملCalcium channel c 6 subunits are unique modulators of low voltage - activated ( Cav 3 . 1 ) calcium current Jared
The calcium channel gamma (c) subunit family consists of eight members whose functions include modulation of high voltage-activated (HVA) calcium currents in skeletal muscle and neurons, and regulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propanoic acid (AMPA) receptor targeting. Cardiac myocytes express at least three c subunits, c4, c6 and c7, whose function(s) in the heart are unknow...
متن کامل